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To Elizabeth Madison, Armaan, and Shaiza





Principles of Geotechnical Engineering was originally published with a 1985 copyright
and was intended for use as a text for the introductory course in geotechnical engineering
taken by practically all civil engineering students, as well as for use as a reference book
for practicing engineers. The book was revised in 1990, 1994, 1998, 2002, 2006, and 2010.
This eighth edition has a coauthor, Khaled Sobhan, of Florida Atlantic University. As in
the previous editions of the book, this new edition offers an overview of soil properties and
mechanics, together with coverage of field practices and basic engineering procedures,
without changing the basic philosophy of the original text. It is not the intent of this book
to conform to any design codes. 

Unlike the seventh edition, which had 18 chapters, this edition has 17 chapters. The
chapter on Landfill Liners and Geosynthetics has been deleted from this edition since the
subject has grown and matured over the years and is offered as a separate course in many
civil engineering programs.

Most of the example problems and homework problems have been changed and/or
modified. One or two critical thinking problems have been added to the homework prob-
lems in most chapters to challenge and enhance the thought process and understanding of
students on the subject(s) covered in a given chapter.

Since geotechnical engineering is a practical and application-oriented subject, a few
actual case histories have also been included. These case histories are presented in Chapters 11,
15, and 16 with the primary intention being to familiarize students with the unpredictable
variability of soil in the field compared to the idealized situation in classroom teaching and
learning. New photographs have also been added throughout.

Other noteworthy changes in the eighth edition include the following:

• An expanded section of the introduction at the beginning and a summary section at
the end of each chapter have been provided.

• In Chapter 2, on Origin of Soil and Grain Size, several photographs of common
rock-forming minerals, rocks, and structures built with or in rock have been added
(Section 2.3). To help students in future field identification of rocks and rock-
forming minerals, they are presented in color as well as in black and white.

vii
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• In Chapter 3, on Weight–Volume Relationships, the section on maximum and minimum
void ratio of granular soil has been expanded.

• The procedure for determination of shrinkage limit of cohesive soils using the wax
method (ASTM Test Designation 4943) has been described in detail in Chapter 4
(Plasticity and Structure of Soil).

• In Chapter 5, on Classification of Soil, line diagrams have been added in example
problems to determine the group names of soils from group symbols (Unified Soil
Classification System). These line diagrams will help the readers follow a step-by-
step procedure in arriving at the proper group name of soil during soil classification.

• The chapter on Soil Compaction (Chapter 6) now includes several recent empirical
correlations to estimate maximum dry unit weight and optimum moisture content
based on the energy of compaction. A section on evaluation of soils as compaction
material has been added.

• In Chapter 9, on In Situ Stresses, a mathematical derivation for a general case
to obtain the seepage force per unit volume of soil is added. Also in this chapter,
Harza’s chart to obtain the exit gradient of flow under a hydraulic structure is
provided. This chart is helpful in estimating the factor of safety against heaving.
An example to show the use of a filter on the downstream side of a hydraulic
structure to increase the factor of safety against heaving is given.

• A section on the vertical stress increase at a certain point and depth below the
ground surface due to a linearly increasing vertical loading on a infinite strip has
been added in Chapter 10, on Stresses in a Soil Mass.

• An improved explanation of the fundamentals of consolidation is given in Chapter 11,
on Compressibility of Soil. This chapter also provides a general discussion on the
effect of load duration on the e – log s� plot.

• Chapter 12, on Shear Strength of Soils, updates the calculation procedure of
undrained cohesion for tests conducted with a tapered vane based on ASTM (2010).

• The procedure for estimation of active earth pressure in a c� �f� soil under
earthquake conditions has been updated in Chapter 13 (Lateral Earth Pressure:
At-Rest, Rankine, and Coulomb).

• The Caquot and Kerisel theory for estimation of passive earth pressure with granular
backfill (inclined back face of wall and horizontal backfill, and vertical back face of
wall and inclined backfill) has now been included in Chapter 14, on Lateral Earth
Pressure: Curved Failure Surface.

• In Chapter 15, on Slope Stability, a detailed derivation on the factor of safety of infinite
slopes with seepage is now included. Results of some recent studies on the critical circles
of failure for slopes in clay (f � 0 condition) and c� � f� soil is added in this chapter.

• A generalized case for Rankine active and passive pressure with granular backfill is
provided in Appendix A.

In the preparation of an engineering text of this type, it is tempting to include many
recent developments relating to the behavior of natural soil deposits found in various
parts of the world that are available in journals and conference proceedings with the
hope that they will prove to be useful to the students in their future practice. However,
based on many years of teaching, the authors feel that clarity in explaining the funda-
mentals of soil mechanics is more important in a first course in this area without
cluttering the book with too many details and alternatives. Many of the intricate details
can be left to an advanced course in the area of geotechnical engineering. This approach
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will most likely help in developing students’ interest and appreciation in the geotechni-
cal engineering profession at large.

Instructor Resource Materials
A detailed Instructor’s Solutions Manual and PowerPoint slides of both figures and tables
and equations and examples from the book are available for instructors through a password-
protected Web site at www.cengagebrain.com.

Student Resource Materials
Self-Evaluation Multiple Choice Questions with Answers for each chapter are available for
students on the book Web site. The students may also benefit from these questions as a
practice tool in preparation for examinations.

To access additional course materials, please visit www.cengagebrain.com. At the
cengagebrain.com home page, search for the ISBN of your title (from the back cover of your
book) using the search box at the top of the page. This will take you to the product page
where these resources can be found. If you require a password, follow directions for
Instructor Resources. 

The authors would not have been able to complete this revised manuscript without the
support and encouragement of their wives, Janice and Samira, and their families. Janice Das
was most helpful in getting the manuscript ready for publication. Professor Sanjay K.
Shukla of Edith Cowan University, Australia, provided many valuable suggestions during
the revision process. Finally, many thanks are due to Christopher Shortt, Publisher; Hilda
Gowans, Senior Development Editor; and Lauren Betsos, Marketing Manager of Cengage
Learning (Engineering) for their assistance and advice in the final development of the book.
It is fitting also to thank Rose P. Kernan of RPK Editorial Services. She has been instru-
mental in shaping the style and overseeing the production of this edition of Principles of
Geotechnical Engineering as well as several previous editions.

Thanks are due to the following reviewers for their comments and constructive
suggestions:

Dragos Andrei, California State Polytechnic University, Pomona, California
Tuncer Edil, University of Wisconsin, Madison, Wisconsin
Ton Qiu, The Pennsylvania State University, University Park, Pennsylvania
Kamal Tawfiq, Florida State University, Tallahassee, Florida
Binod Tiwari, California State University, Fullerton, California
Jay Wang, Louisiana Tech University, Ruston, Louisiana
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1.1 Introduction

For engineering purposes, soil is defined as the uncemented aggregate of mineral grains and
decayed organic matter (solid particles) with liquid and gas in the empty spaces between the
solid particles. Soil is used as a construction material in various civil engineering projects,
and it supports structural foundations. Thus, civil engineers must study the properties of
soil, such as its origin, grain-size distribution, ability to drain water, compressibility, shear
strength, and load-bearing capacity. Soil mechanics is the branch of science that deals with
the study of the physical properties of soil and the behavior of soil masses subjected to var-
ious types of forces. Soils engineering is the application of the principles of soil mechanics
to practical problems. Geotechnical engineering is the subdiscipline of civil engineering
that involves natural materials found close to the surface of the earth. It includes the appli-
cation of the principles of soil mechanics and rock mechanics to the design of foundations,
retaining structures, and earth structures.

1.2 Geotechnical Engineering Prior to the 18th Century

The record of a person’s first use of soil as a construction material is lost in antiquity. In true
engineering terms, the understanding of geotechnical engineering as it is known today began
early in the 18th century (Skempton, 1985). For years, the art of geotechnical engineering
was based on only past experiences through a succession of experimentation without any real
scientific character. Based on those experimentations, many structures were built—some of
which have crumbled, while others are still standing.

Recorded history tells us that ancient civilizations flourished along the banks of
rivers, such as the Nile (Egypt), the Tigris and Euphrates (Mesopotamia), the Huang Ho
(Yellow River, China), and the Indus (India). Dykes dating back to about 2000 B.C. were
built in the basin of the Indus to protect the town of Mohenjo Dara (in what became
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Pakistan after 1947). During the Chan dynasty in China (1120 B.C. to 249 B.C.) many
dykes were built for irrigation purposes. There is no evidence that measures were taken
to stabilize the foundations or check erosion caused by floods (Kerisel, 1985). Ancient
Greek civilization used isolated pad footings and strip-and-raft foundations for building
structures. Beginning around 2700 B.C., several pyramids were built in Egypt, most of
which were built as tombs for the country’s Pharaohs and their consorts during the Old
and Middle Kingdom periods. Table 1.1 lists some of the major pyramids identified
through the Pharaoh who ordered it built. As of 2008, a total of 138 pyramids have been
discovered in Egypt. Figure 1.1 shows a view of the pyramids at Giza. The construction
of the pyramids posed formidable challenges regarding foundations, stability of slopes,
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Table 1.1 Major Pyramids in Egypt

Pyramid/Pharaoh Location Reign of Pharaoh

Djoser Saqqara 2630–2612 B.C.
Sneferu Dashur (North) 2612–2589 B.C.
Sneferu Dashur (South) 2612–2589 B.C.
Sneferu Meidum 2612–2589 B.C.
Khufu Giza 2589–2566 B.C.
Djedefre Abu Rawash 2566–2558 B.C.
Khafre Giza 2558–2532 B.C.
Menkaure Giza 2532–2504 B.C.

Figure 1.1 A view of the pyramids at Giza. (Courtesy of Janice Das, Henderson, Nevada)
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and construction of underground chambers. With the arrival of Buddhism in China
during the Eastern Han dynasty in 68 A.D., thousands of pagodas were built. Many of
these structures were constructed on silt and soft clay layers. In some cases the founda-
tion pressure exceeded the load-bearing capacity of the soil and thereby caused exten-
sive structural damage.

One of the most famous examples of problems related to soil-bearing capacity in
the construction of structures prior to the 18th century is the Leaning Tower of Pisa in
Italy (See Figure 1.2). Construction of the tower began in 1173 A.D. when the Republic
of Pisa was flourishing and continued in various stages for over 200 years. The structure
weighs about 15,700 metric tons and is supported by a circular base having a diameter of
20 m. The tower has tilted in the past to the east, north, west, and, finally, to the south.
Recent investigations showed that a weak clay layer existed at a depth of about 11 m
below the ground surface compression of which caused the tower to tilt. It became more
than 5 m out of plumb with the 54 m height. The tower was closed in 1990 because it was
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Figure 1.2 Leaning Tower of Pisa, Italy (Courtesy of Braja M. Das, Henderson, Nevada)



feared that it would either fall over or collapse. It recently has been stabilized by exca-
vating soil from under the north side of the tower. About 70 metric tons of earth were
removed in 41 separate extractions that spanned the width of the tower. As the ground
gradually settled to fill the resulting space, the tilt of the tower eased. The tower now
leans 5 degrees. The half-degree change is not noticeable, but it makes the structure con-
siderably more stable. Figure 1.3 is an example of a similar problem. The towers shown
in Figure 1.3 are located in Bologna, Italy, and they were built in the 12th century. The
tower on the left is usually referred to as the Garisenda Tower. It is 48 m in height and
weighs about 4210 metric tons. It has tilted about 4 degrees. The tower on the right is
the Asinelli Tower, which is 97 m high and weighs 7300 metric tons. It has tilted about
1.3 degrees.

After encountering several foundation-related problems during construction
over centuries past, engineers and scientists began to address the properties and behav-
iors of soils in a more methodical manner starting in the early part of the 18th century.
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Figure 1.3 Tilting of Garisenda Tower (left) and Asinelli Tower (right) in Bologna, Italy
(Courtesy of Braja M. Das, Henderson, Nevada)



Based on the emphasis and the nature of study in the area of geotechnical engineering,
the time span extending from 1700 to 1927 can be divided into four major periods
(Skempton, 1985):

1. Preclassical (1700 to 1776 A.D.)
2. Classical soil mechanics—Phase I (1776 to 1856 A.D.)
3. Classical soil mechanics—Phase II (1856 to 1910 A.D.)
4. Modern soil mechanics (1910 to 1927 A.D.)

Brief descriptions of some significant developments during each of these four periods are
presented below.

1.3 Preclassical Period of Soil Mechanics (1700–1776)

This period concentrated on studies relating to natural slope and unit weights of various
types of soils, as well as the semiempirical earth pressure theories. In 1717, a French royal
engineer, Henri Gautier (1660–1737), studied the natural slopes of soils when tipped in a
heap for formulating the design procedures of retaining walls. The natural slope is what
we now refer to as the angle of repose. According to this study, the natural slope of clean
dry sand and ordinary earth were 31° and 45°, respectively. Also, the unit weight of clean
dry sand and ordinary earth were recommended to be 18.1 kN/m3 and 13.4 kN/m3

(85 lb/ft3), respectively. No test results on clay were reported. In 1729, Bernard Forest de
Belidor (1671–1761) published a textbook for military and civil engineers in France. In the
book, he proposed a theory for lateral earth pressure on retaining walls that was a follow-
up to Gautier’s (1717) original study. He also specified a soil classification system in the
manner shown in the following table.

1.3 Preclassical Period of Soil Mechanics (1700–1776) 5

Unit Weight

Classification kN/m3

Rock —

Firm or hard sand 16.7 to
Compressible sand 18.4

Ordinary earth (as found in dry locations) 13.4
Soft earth (primarily silt) 16.0
Clay 18.9

Peat —

The first laboratory model test results on a 76-mm-high retaining wall built with
sand backfill were reported in 1746 by a French engineer, Francois Gadroy
(1705–1759), who observed the existence of slip planes in the soil at failure. Gadroy’s
study was later summarized by J. J. Mayniel in 1808. Another notable contribution
during this period is that by the French engineer Jean Rodolphe Perronet (1708–1794),
who studied slope stability around 1769 and distinguished between intact ground
and fills.
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1.4 Classical Soil Mechanics—Phase I (1776–1856)

During this period, most of the developments in the area of geotechnical engineering
came from engineers and scientists in France. In the preclassical period, practically all
theoretical considerations used in calculating lateral earth pressure on retaining walls
were based on an arbitrarily based failure surface in soil. In his famous paper presented
in 1776, French scientist Charles Augustin Coulomb (1736–1806) used the principles of
calculus for maxima and minima to determine the true position of the sliding surface in
soil behind a retaining wall. In this analysis, Coulomb used the laws of friction and cohe-
sion for solid bodies. In 1790, the distinguished French civil engineer, Gaspard Clair
Marie Riche de Prony (1755–1839) included Coulomb’s theory in his leading textbook,
Nouvelle Architecture Hydraulique (Vol. 1). In 1820, special cases of Coulomb’s work
were studied by French engineer Jacques Frederic Francais (1775–1833) and by French
applied mechanics professor Claude Louis Marie Henri Navier (1785–1836). These
special cases related to inclined backfills and backfills supporting surcharge. In 1840,
Jean Victor Poncelet (1788–1867), an army engineer and professor of mechanics,
extended Coulomb’s theory by providing a graphical method for determining the mag-
nitude of lateral earth pressure on vertical and inclined retaining walls with arbitrarily
broken polygonal ground surfaces. Poncelet was also the first to use the symbol f for
soil friction angle. He also provided the first ultimate bearing-capacity theory for
shallow foundations. In 1846 Alexandre Collin (1808–1890), an engineer, provided the
details for deep slips in clay slopes, cutting, and embankments. Collin theorized that in
all cases the failure takes place when the mobilized cohesion exceeds the existing cohe-
sion of the soil. He also observed that the actual failure surfaces could be approximated
as arcs of cycloids.

The end of Phase I of the classical soil mechanics period is generally marked by
the year (1857) of the first publication by William John Macquorn Rankine (1820–1872),
a professor of civil engineering at the University of Glasgow. This study provided a notable
theory on earth pressure and equilibrium of earth masses. Rankine’s theory is a simplifi-
cation of Coulomb’s theory.

1.5 Classical Soil Mechanics—Phase II (1856–1910)

Several experimental results from laboratory tests on sand appeared in the literature in
this phase. One of the earliest and most important publications is one by French engi-
neer Henri Philibert Gaspard Darcy (1803–1858). In 1856, he published a study on the
permeability of sand filters. Based on those tests, Darcy defined the term coefficient of
permeability (or hydraulic conductivity) of soil, a very useful parameter in geotechnical
engineering to this day.

Sir George Howard Darwin (1845–1912), a professor of astronomy, conducted
laboratory tests to determine the overturning moment on a hinged wall retaining
sand in loose and dense states of compaction. Another noteworthy contribution, which
was published in 1885 by Joseph Valentin Boussinesq (1842–1929), was the develop-
ment of the theory of stress distribution under loaded bearing areas in a homogeneous,
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semiinfinite, elastic, and isotropic medium. In 1887, Osborne Reynolds (1842–1912)
demonstrated the phenomenon of dilatancy in sand. Other notable studies during
this period are those by John Clibborn (1847–1938) and John Stuart Beresford
(1845–1925) relating to the flow of water through sand bed and uplift pressure.
Clibborn’s study was published in the Treatise on Civil Engineering, Vol. 2: Irrigation
Work in India, Roorkee, 1901 and also in Technical Paper No. 97, Government of
India, 1902. Beresford’s 1898 study on uplift pressure on the Narora Weir on the
Ganges River has been documented in Technical Paper No. 97, Government of
India, 1902.

1.6 Modern Soil Mechanics (1910–1927)

In this period, results of research conducted on clays were published in which the funda-
mental properties and parameters of clay were established. The most notable publications
are described next.

Around 1908, Albert Mauritz Atterberg (1846–1916), a Swedish chemist and soil
scientist, defined clay-size fractions as the percentage by weight of particles smaller than
2 microns in size. He realized the important role of clay particles in a soil and the plasticity
thereof. In 1911, he explained the consistency of cohesive soils by defining liquid, plastic,
and shrinkage limits. He also defined the plasticity index as the difference between liquid
limit and plastic limit (see Atterberg, 1911).

In October 1909, the 17-m-high earth dam at Charmes, France, failed. It was built
between 1902 and 1906. A French engineer, Jean Fontard (1884–1962), carried out investiga-
tions to determine the cause of failure. In that context, he conducted undrained double-shear
tests on clay specimens (0.77 m2 in area and 200 mm thick) under constant vertical stress to
determine their shear strength parameters (see Frontard, 1914). The times for failure of these
specimens were between 10 to 20 minutes.

Arthur Langley Bell (1874–1956), a civil engineer from England, worked on the
design and construction of the outer seawall at Rosyth Dockyard. Based on his work, he
developed relationships for lateral pressure and resistance in clay as well as bearing capac-
ity of shallow foundations in clay (see Bell, 1915). He also used shear-box tests to measure
the undrained shear strength of undisturbed clay specimens.

Wolmar Fellenius (1876–1957), an engineer from Sweden, developed the stability
analysis of saturated clay slopes (that is, f � 0 condition) with the assumption that
the critical surface of sliding is the arc of a circle. These were elaborated upon in his
papers published in 1918 and 1926. The paper published in 1926 gave correct numeri-
cal solutions for the stability numbers of circular slip surfaces passing through the toe of
the slope.

Karl Terzaghi (1883–1963) of Austria (Figure 1.4) developed the theory of consol-
idation for clays as we know today. The theory was developed when Terzaghi was teach-
ing at the American Robert College in Istanbul, Turkey. His study spanned a five-year
period from 1919 to 1924. Five different clay soils were used. The liquid limit of those
soils ranged between 36 and 67, and the plasticity index was in the range of 18 to 38.
The consolidation theory was published in Terzaghi’s celebrated book Erdbaumechanik
in 1925.
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1.7 Geotechnical Engineering after 1927

The publication of Erdbaumechanik auf Bodenphysikalisher Grundlage by Karl Terzaghi in
1925 gave birth to a new era in the development of soil mechanics. Karl Terzaghi is known
as the father of modern soil mechanics, and rightfully so. Terzaghi was born on October 2,
1883 in Prague, which was then the capital of the Austrian province of Bohemia. In 1904
he graduated from the Technische Hochschule in Graz, Austria, with an undergraduate
degree in mechanical engineering. After graduation he served one year in the Austrian army.
Following his army service, Terzaghi studied one more year, concentrating on geological
subjects. In January 1912, he received the degree of Doctor of Technical Sciences from his
alma mater in Graz. In 1916, he accepted a teaching position at the Imperial School of
Engineers in Istanbul. After the end of World War I, he accepted a lectureship at the
American Robert College in Istanbul (1918–1925). There he began his research work on the
behavior of soils and settlement of clays and on the failure due to piping in sand under
dams. The publication Erdbaumechanik is primarily the result of this research.
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Figure 1.4 Karl Terzaghi (1883–1963) (SSPL via Getty Images)



In 1925, Terzaghi accepted a visiting lectureship at Massachusetts Institute of
Technology, where he worked until 1929. During that time, he became recognized as the
leader of the new branch of civil engineering called soil mechanics. In October 1929, he
returned to Europe to accept a professorship at the Technical University of Vienna, which
soon became the nucleus for civil engineers interested in soil mechanics. In 1939, he
returned to the United States to become a professor at Harvard University.

The first conference of the International Society of Soil Mechanics and Foundation
Engineering (ISSMFE) was held at Harvard University in 1936 with Karl Terzaghi
presiding. The conference was possible due to the conviction and efforts of Professor
Arthur Casagrande of Harvard University. About 200 individuals representing 21 countries
attended this conference. It was through the inspiration and guidance of Terzaghi over the
preceding quarter-century that papers were brought to that conference covering a wide
range of topics, such as

• Effective stress
• Shear strength
• Testing with Dutch cone penetrometer
• Consolidation
• Centrifuge testing
• Elastic theory and stress distribution
• Preloading for settlement control
• Swelling clays
• Frost action
• Earthquake and soil liquefaction
• Machine vibration
• Arching theory of earth pressure

For the next quarter-century, Terzaghi was the guiding spirit in the development of soil
mechanics and geotechnical engineering throughout the world. To that effect, in 1985, Ralph
Peck wrote that “few people during Terzaghi’s lifetime would have disagreed that he was not
only the guiding spirit in soil mechanics, but that he was the clearing house for research and
application throughout the world. Within the next few years he would be engaged on proj-
ects on every continent save Australia and Antarctica.” Peck continued with, “Hence, even
today, one can hardly improve on his contemporary assessments of the state of soil mechan-
ics as expressed in his summary papers and presidential addresses.” In 1939, Terzaghi deliv-
ered the 45th James Forrest Lecture at the Institution of Civil Engineers, London. His lecture
was entitled “Soil Mechanics—A New Chapter in Engineering Science.” In it, he proclaimed
that most of the foundation failures that occurred were no longer “acts of God.”

Following are some highlights in the development of soil mechanics and geotechni-
cal engineering that evolved after the first conference of the ISSMFE in 1936:

• Publication of the book Theoretical Soil Mechanics by Karl Terzaghi in 1943 (Wiley,
New York)

• Publication of the book Soil Mechanics in Engineering Practice by Karl Terzaghi
and Ralph Peck in 1948 (Wiley, New York)

• Publication of the book Fundamentals of Soil Mechanics by Donald W. Taylor in
1948 (Wiley, New York)

• Start of the publication of Geotechnique, the international journal of soil mechanics
in 1948 in England
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